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Starting from a scattering problem of intermediate-energy nuclear particles, a new 
numerical method for the evaluation of the Hankel transform of an even function has been 
performed. The main feature of our method is the expansion of the even function in series of 
discrete Laguerre polynomials. It was found that the use of discrete Laguerre polynomiais 
decreases the computer time without any loss of the advantages found in the use of classical 
polynomials. 

1. INTRODUCTION 

The Glauber theory [4] is known to be one of the most successful approx~~~at~~~ 
methods for describing the scattering of high-energy interacting particles. In this 
theory, the complicated interactions of a projectile with a nucleus are reduced to a 
simple additivity of phase shifts due to the particle-nucleon interactions. The forwar 
differential cross-section for elastic scattering of a nuclear particle, neglecting the 
spin-orbit and Coulomb potential, can be related to the two-dirne~s~o~a~ Fourier 
transform of a suitable phase shift in the impact parameter representation. 

We have (see [2]) 

with 
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where 

V(b,z) dz . 1 
In the above expression k is the wave number of the incident particle of mass m 
scattered by the potential V(r) = V(b, z), b is the transverse component of the vector r 
and q1 is the perpendicular component of the momentum transfer. If the problem is 
spherically symmetric, as appears in the majority of the cases, the function q(b) 
depends only on ( bj2 E b2 and for physical reasons it is exponentially decreasing as 
b-m. 

In this case we can write 

p(b) = cab2g(b2), 

where a is a suitable constant, and the evaluation of F,(q,) leads now to the Hankel 
transform of a strongly decreasing even function. 

By taking polar coordinates (b, q) with the polar axis in the direction of qL, we 
have d2b = bdb cos p, q1 . b = ql. b cos q and, after some calculations, we obtain 

I 

co 
= ik e-“b*Jo(q,b) g(b2) b . db. 

0 

A little manipulation reduces our problem to the evaluation of integrals of the type 

I(o) = Cm e-x2Jo(wx)f(x2) x dx, 
0 

(1) 

where w  is proportional to the momentum transfer qL and&‘) = g(x2/d2). Since the 
Glauber approximation improves with higher energy, the values of o used in prac- 
tical comparison of experimental and theoretical results can be very large [9]. 

2. METHOD 

In principle, one can seek to evaluate the integral (1) by some standard numerical 
quadrature methods but, as w  increases, the rapid oscillations of the integrand 
function may create serious numerical problems; the error due to the cancellation of 
nearly equal positive and negative terms can grow prohibitively. (See Table III.) 

On the other hand, one can evaluate I(w), for o + co by some asymptotic 
formulas. In recent years the asymptotic expansions of the Hankel transform have 
stirred up considerable attention 17, 10, 11, 131. 
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Unfortunately the asymptotic relations quoted in the above papers cannot be used 
in our case becausef(x2) is an even function, the coefficients of the expansion being 
identically zero. 

The last observation suggests the existence of an exponential term in a possi 
asymptotic expansion. 

In order to take into account the exponential behaviour when o is large, we 
propose, before term by term integration, to expand f(-?) in series of Laguerre 
polynomials. This follows from the consideration that the Hankel transform of 15,(x’) 
can be performed analytically and it is exponentially decreasing as CO -+ co. Let 

with 

where y =x’. 
Substitution of (2) in (1) gives 

I(0) = jm eex *J,(wx) 5 b,L,(x2)x dx = 2 b, V,, 
0 n=O iI=0 

where (Gradshteyn and Ryzhik [6]) 

-&G/4 2n 

V,= J a3e-**~o(ox)~~(xz)xdy=~ 
0 

0 2(d) 
i - 1 

2 
a 

The computation of V, may be carried out by the simple recurrence relations [3] 

V.-$$Vn, n = 0, I,..., n,, 

V 
w2 

?I+‘= 4(n+ 1) 
V 

n’ n=n,, n, + I,..., 

where 

2 

n,= E-. [ 1 4 

([Xl denotes the integer part of X.) When w  is “not too large,” it is convenient to 
consider only forward recurrence relation (7) with no = 0 and 
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whereas for o “very large” the asymptotic estimate for V,, 

1 139 571 -I 
+i&jT-6- 8100~ )I 97200’ ’ 

is recommended. 

3. THE EVALUATION OF THE LAGUERRE-FOURIER COEFFICIENTS 

Formula (4) requires the Laguerre-Fourier coefficients b, . 
From (6), (7) it is easy to see to see that the sequence {V,,}, n = 0, l,..., reaches the 

maximum value for n = 12, and is strongly decreasing as n > n,. The same behaviour 
can be expected for the sequence {I b, V,,l}; thus the summation (4) converges rapidly 
for 12 > n,. 

In principle many standard methods are available for the calculation of b, (for 
instance, the Gaussian integration formulas, trapezoidal rule, etc.), but in many prac- 
tical situations the calculations are time consuming and are not manageable when II 
increases. 

We will propose here a method, utilizing the Laguerre discrete orthogonal 
polynomials, which is particularly appropriate (see [ 11) when the values of the 
function f(y) are subjected to independent normally distributed errors (due, for 
example, to observational errors, rounding errors, etc.). Moreover the method turns 
out to be of easy application and suitable to compute a large number of b, 
coefficients. 

We begin with a standard procedure for the evaluation of b,; the application of the 
modified trapezoidal rule (see [8, Chap. 15]), with integration step size h > 0, to (3), 
gives 

=h 5 
k=O 

e-(k+1’2)h.Ln (kh+G)f(kh++) +G (8) 

with 

(9) 

where the ak’s are independent of h and the functionf(y) is supposed infinitely times 
differentiable. Iff(v) is only 2s (s > 0 integer) times differentiable the summation (9) 
ends after the 8th term. 

An explicit expression for ak is given by Luke [8]. 
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It is well known, when a formula of type (9) is applicable, that 
extrapolation method is very efficient. Romberg’s extrapolation and trape 
converge rapidly to the correct value; however, when n is large, the amount of 
calculation can grow prohibitively. The halving of h in Romberg’s table, requires new 
values of L, (computed by the standard three term recurrence relation) which must 
be evaluated starting from ~5,. This procedure may require a large amount of 
computing time. The utilization of discrete orthogonal Laguerre polynomials avoids 
such an inconvenience without losing the advantages given by formula (9). The 
discrete othogonal Laguerre polynomials were developed by ~ott~~~b [S] but for our 
purpose it is convenient to redefine them in a more suitable form. In Appendix A 
some of the most important properties of such polynomials are displayed. 

As an approximate value of b,, we assume bk” is given by 

bjth’ = h 2 
k=O 

where ly’, the Laguerre discrete polynomials defined by (A.l), are calculate 
three term recurrence relation 

(k + 1) Zih’(k + +) = [n + k $ 1 + eh(k - n)] $“(k + 4) - kehZr’(k - $), 

zp’(+> = ,-hd2, p<- i) = 0; k = 0: l,..., (Ia> 

which may be easily obtained by combining (AS) with the symmetrical relation 
(A.4). The starting value Zp’(4) ensues immediately from (A.3). 

Finally we observe that 

b,-bLh’= imepY L,(y)-iAh’ 
'0 

_ h 5 e-‘k+l/2)hz;h) 
k=O 

By using asymptotic relation (-4.8) in the first integral and applying the tr~~~~oid~~ 
rule (8), (9), to the second integral, the analogous formula of (8) 

b,= bkh’ $ 2 /&h2k 
k=O 

(with Pk constants independent of h) can be proved. 
We remark that the computation of bi” given by (IO) is much less expensive than 

(8). In fact stopping the summations in (8) and (10) after N terms, formula (10) 
requires, for the evaluation of Zy’, only N iterations of (ll), whereas f~rrn~~a (8) 
implies, for the computation of L,(kh + h/2), n ’ N iterations of the three term 
recurrence relation of the Laguerre polynomials without increasing the accuracv in 
the numerical results. 
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4. NUMERICAL EXAMPLES 

The complete evaluation of the integral (1) withf(X2) = sin(x’) is performed to test 
the global usefulness of our method. 

Equation (4) used to evaluate the integral 

can be expressed in the 

I(o) = Jw e-*2J,(wx) sin(x2) x dx 
0 

form 

(13) 

I(w) -IN(w) = 2 c, v,. 
k=l 

The Laguerre coefficients 

C,= 
I 

m ewYLk(y) sin y ~JJ (14) 
0 

were evaluated by the method outlined in Section 3; working with ~15 significant 
digits we were able to compute about a hundred C, coefficients, all correct at least up 
to 6 decimal digits. In Tables I and II the elements of Romberg’s table relative, 
respectively, to the coefficients C74, C,, are listed. 

The exact values are: C,, = 0, C,, = -0.3637978... X 10-l’. 
In order to show the power of our method we performed the evaluation of (13) 

with two standard methods. Namely, we first evaluate the integral in the finite 
interval 0 f 15 by the repeated Simpson rule (a larger interval was not .considered to 
avoid exponential underflow). Second, we use again the repeated Simpson rule after 
the subdivision of the interval 0 + 15 into subintervals where ends are zeros of 
J,(u.xx). The relative accuracies of the numerical results for increasing values of w  are 
listed in Table III. From the second column it appears that for a given w  < 12 our 

TABLE1 

Romberg’s Table for the 74th Laguerre’s Coefficient.” 

M h 

340 0.50 0.3373x10-1 
680 0.25 0.2261x10-” 0.1890X10-‘I 

1020 0.167 0.1140x10-” 0.2428x10-” O.3696x1O113 
1360 0.125 0.6675x10-” 0.6036x10-” -0,4665x10-I5 -O.2961xlO-‘4 
2040 0.083 0.3050x10-‘* O.1499xlO-‘3 -0.1371x10-‘5 -0.9595X10-‘6 -0.1408x10-I6 

Note. M = total number of integrand evaluation; h = stepsize of integration. 
a The exact value is C,, = 0. 



DISCRETE LAGUERRE POLYNOMIALS 283 

TABLE II 

C,, x 10”; Romberg’s Table for the 75th Laguerre’s Coeffkient.” 

M h 
__ 

340 0.500 -0.165542 
680 0.250 -0.163107 -0.272657 

1020 0.167 -0.271204 -0.357682 -0.3683 11 
1360 0.125 -0.311223 -0.362675 -0.364340 -0.364075 
2040 0.083 -0.340303 -0.363567 -0.363864 -0.363805 -0.363796 
2120 0.0625 -0.350560 -0.363747 -0.363807 -0.363791 -0.363797 -0.363197 

Note. M = total number of integrand evaluation; h = stepsize of integration. 
‘The exact value is C,, = -0.3637978... x 10-I’. 

method can be used to compute I(w) in (12). Indeed for o > 12 we notice a loss of 
accuracy in the computation of the coefficients (14) by means of the discrete 
polynomial method. The use of higher precision arithmetic could delay this stumbling 
block (but not remove it), and convergence of series (8) could be improved by 
applying linear or non-linear transformations. However, in this paper we do not 
consider these devices. 

Finally we focus our attention on the efficiency of the discrete Laguerre 
polynomials method and we compare the numerical evaluation of the coefficients (14) 
obtained by means of (10) with the corresponding results given by eompou 

TABLE III 

Relative Accuracies in the Evaluation of 
5; e-XzJ,(ox) sin x2 x dx Obtained via Different Numerical Methods 

Relative accuracy of 
Relative accuracy of repeated Simpson rule Relative accuracy in 

w formula (8) in subintervals repeated Simpson rule 

6 I.4 x lo+ 2.9 x lo-’ 1.5 = io-7 
I 6.0 x 1Q-9 5.0 x lo-’ 5.3 x lo-’ 
8 3.9 x 1o-9 3.9 x 1o-6 3.5 x 10-6 
9 2.1 x 1o-8 2.8 x lo-“ 2.8 x 1o-4 

10 1.6 x lo-* 2.7 x 1U4 3.4 x 1o-4 
11 1.5 x lo-’ 2.7 x 1o-4 3.6 x iw3 
12 1.6 x 1O-6 5.7 x 10-j 6.3 x lwz 
13 2.2 x 1o-3 2.0 x 10-i 1.4 x 10” 
14 7.1 x 1o-5 5.1 x loo 4.2 x IO’ 
15 2.8 x lo-’ 6.2 x 10’ 1.9 x lo3 
16 5.8 x 10-i 1.5 x lo3 3.8 x IO5 
17 6.2 x 10’ 6.1 x lo5 6.6 x !06 
18 7.7 x lo3 6.6 x 10’ 4.1 x 10s 
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Gaussian quadrature formulas. To approximlate C, by Gaussian quadrature we split 
the integral in the following way: 

C, = 
I 

’ eFYL,(y) siny dy + lrn eoYL,(y) siny @ = dk + ek. 
0 a 

If a is sufficiently large (in practice we found a ~60 to be adequate) then ek is 

negligible with respect to dk. To evaluate the dk’s we utilize a compound 24th node 
Legendre quadrature formula. The computation of several coefficients C, with eight 
significant exact decimal digits has been performed on an IBM 370/158 computer 
(system IAT) and the corresponding results are plotted in Fig. 1, where the CPU time 
(in seconds) is given for the first ‘k coefficients C,. We observe that the Gaussian 
quadrature is remarkably more efficient than the discrete polynomials method when k 
is small, however, our method becomes competitive when k > 60. 

Another example is supplied with the numerical evaluation of the coefficients: 

c,= I O” e-YLW I Y(Y - WI dk k = 0, l,.... 
0 

Here the integrand function has a discontinuity in the first derivative. 
Results analogous to those plotted in Fig. 1 are shown in Fig. 2. (In this case 

lowest degree formulas are usually preferred to higher degree ones, however, the use 
of repeated trapezoidal rule has led to poor results; indeed we are not able to evaluate 
more than about 25 coefficients C, with the requested accuracy.) 

From the above examples it would appear that the CPU time consumed by Gauss 
formulas increases (at a rough guess) exponentially, whereas the time consumed by 

4 

. 

FIG. 1. CPU time (in seconds) needed to evaluate the first k Laguerre’s coefficients of the function 
f(y) = siny: 0, with Gaussian quadrature method: A, with discrete Laguerre polynomial method. 
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FIG. 2. The same as for Fig. 1 but for the function j y  . (y - 20)/. 

the discrete polynomial method grows approximately linearly when the comber of 
coefficients becomes large. (This is not surprising: for the classical Laguerre 
polynomials we do not have a recurrence relation of type (II).) Thus our metho 
particularly recommended when a large number of Laguerre coefticients is required; 
in this sense it appears useful for the evaluation of the integral (1). 

CONCLUSIONS 

The reliability of the numerical evaluation of integral (1) using series (4) is 
considered. It appears that most of the computational effort will be expended in 
computing the coefficients (3). To solve this quadrature problem we suggest a method 
involving the Laguerre discrete polynomials which, taking into account the special 
features of the problem, shows some advantages with respect to other ~t~da~d 
quadrature methods. An improvement could be attempted by using a~ceierat~~R 
methods of series. These include: Euler’s transformation, &-Algorithm, Eevin’s 
transformation. Although here we do not consider these possibilities, we notice that in 
[ 3] an empirical acceleration method of the whole problem is suggested. The prac- 
tical utilization of this wili be considered in a future paper. 

APPENDIX A 

In [5] Gottlieb considers the discrete Laguerre polynomials Z’,h’(k) defined in the 
points k = 0, 1, 2,... which are connected with the Laguerre polynomials L,(X) by the 
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limit relation: Z~“(x/h) = L,(x) + O(h), h -+ 0. Here we modify the definition of Iy’ 
given in [5] in order to get 

Zih)(x/h) = L,(x) + O(h2). 

Let 

p (m++e%pjm+n”‘2)~, (A.11 

where n, m = 0, 1,2 ,..., and 6 denotes the standard central difference operator. 
It is easy to prove, by Abel’s transform, that IL*’ satisfy the orthogonality relations 

if k#n 

1 
= 2 sh(h/2) 

if k = n. 

Using a well known formula for P, we obtain for Zih’ the explicit expression 

m,n=0,1,2 ,.... 

The symmetry property 

enN21Lh’(m + $) = emh12Q)(n + i), 

immediately follows. 

m, n = 0, 1, 2 ,..., 

In the usual way, the three term recurrence relation 

(n + l)ZLh’ (mf+)=2 [sh (G) (,+r)+ch($) (n+f)] 

.Zkh) (m+f)nZLhJl (m++-), m,n=0,1,2 ,..., 

(A.21 

(A.31 

(A4 

(A.5) 

may be proved. 
The discrete polynomials defined by (A.l) are connected to the Laguerre 

polynomials by the relation 

l’h’ x n ( 1 T -L,(x)= 2 PkhZk as h-+0, (-4.6) 
k=l 

where x = (m + 4) h, m = 0, 1, 2 ,... and pk are constants independent of h. 
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In order to prove (A.6) we write (A.l) in the form 

Expanding the ratio of gamma functions through the Tricomi-Erdeii formula, (see 

1121) 

T(x/h + (n + 1)/2) X n 
l-(x/h - (n - 1)/2) - k ( 1 

t;,&+‘(F) (,“, 

where B$+ “((n + 1)/2) denote the Bernoulli polynomials, and using the formula 
giving the central differences in terms of the derivatives, we obtain (A.6). 

Finally, we notice the following generating function: 

-h/2 x-112 
G(x, w) = 2 ZLh’(x) wn = ehx (~~eeNi$ 1,2 , 

n=O 
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